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We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model
such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian
phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously
broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the
vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The
phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles
of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct
Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except
in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond
to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb
model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by
explicit calculation.
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I. INTRODUCTION

In his original analysis of the honeycomb model,1 Kitaev
noted that a similar type of system but with triangles placed
at the vertices of the honeycomb lattice would spontaneously
break time-reversal symmetry. A system of precisely this
type was subsequently analyzed by Yao and Kivelson2 and
shown to be an example of a chiral spin liquid with just
nearest-neighbor interactions between sites. This system also
inherits a number of interesting properties from the original
honeycomb model, particularly the existence of both Abelian
and non-Abelian topological phases. A finite temperature
analysis of the model has recently been performed3 and, as
with the original honeycomb model, there are important
overlaps with the physics of classical dimer models and
Kasteleyn matrices.4

In what follows we present an analysis of this system
using the Jordan-Wigner fermionization procedure of Ref. 5
which explicitly formulates the fermionic vacua as toric-code
states on an effective Kagome lattice. The fermionization
procedure is a two-step process where we map the model to
a system of hard-core bosons and spins on an effective
Kagome lattice,6,7 and then define fermions in terms of the
hard-core bosons and spins. Once fermionized, and similarly
to the original honeycomb lattice model,8 the ground-state
sector of the system can be transformed to that of a spinless
p-wave superconductor. With our method however, we ob-
tain vacua for the fermionized theory as the stabilized wave
functions of an Abelian toric-code model,9 defined with ef-
fective spins on a Kagome lattice. These vacuum wave func-
tions are independent of the couplings of the model. The
ground state for the full system, valid for the entire param-
eter space, is a BCS type condensate over the toric-code
ground state. The topological degeneracies of the model are
already present at the level of the fermionic vacuum. How-
ever, by generalizing the arguments presented in Refs. 5 and
10 we show how the BCS product lifts some of this degen-

eracy in the non-Abelian phase. The predicted degeneracy is
in agreement with the original observations of Yao and
Kivelson.2

The representation we use also illuminates the nature of
the spontaneously broken time-reversal symmetry. We see,
for example, that this symmetry is broken at the level of the
vacua. The chiral nature of these vacuum states has been
recently analyzed.11 A detailed analysis of the phase bound-
ary between the Abelian and the non-Abelian phases is also
included and we show that this critical boundary can be un-
derstood as a sphere in the space of the spin-spin coupling
strengths. We also see that the opening of a gap to a non-
Abelian phase is highly dependent on the interaction
strengths around the triangular plaquettes. We will show that
if any of these interactions are subtracted from the Hamil-
tonian we cannot open a gap to the non-Abelian phase. Exact
expressions for the energy dispersion relations for ground-
state sectors are proved in the Appendix, which also provides
a brief analysis of the Dirac cone structures of the gapless
phases.

II. STAR LATTICE KITAEV MODEL AND THE
HEXAGONAL TORIC CODE

The Hamiltonian consists of directional spin-spin interac-
tions on the star lattice �also known as the triangle-
honeycomb or Fisher lattice�. We use the representation of
the model introduced in Ref. 6 as it provides a straightfor-
ward route, by contracting the Z links, to the definition of the
fermions as toric-code states on the Kagome lattice. In this
representation the Hamiltonian can be written as

H = HZ + HJ + HK + HL

= − Z �
Z links

�z�z − J �
J links

�x�y − K �
K links

�x�y

− L �
L links

�x�y , �1�
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where it should be understood that the Z links connect sepa-
rate triangles and the J, K, and L links within the triangles
are the positive, zero, and negative slopes, respectively, see
Fig. 1. We refer to triangles that point up as black triangles
and those that point down as white triangles. The sites on
these triangles in the original lattice are colored black and
white, respectively.

We define a basic unit cell of the lattice around a white
triangle. We label the Z link at the bottom of the triangle with
n=1, the Z link from the top right with n=2, and the Z link
from the top left with n=3. Each spin site can be specified
using the position vector q, the index n, and whether it is on
a � or a � site. In a 6N spin system we have N unit cells.

Using this basic unit cell, we may write

HZ = − Z�
q

�
n=1

3

�q,n,�
z �q,n,�

z , �2�

HJ = − J�
q

�q,1,�
y �q,2,�

x + �q→,1,�
y �q,2,�

x , �3�

HK = − K�
q

�q,2,�
y �q,3,�

x + �q↖,2,�
y �q,3,�

x , �4�

HL = − L�
q

�q,3,�
y �q,1,�

x + �q↓,3,�
y �q,1,�

x , �5�

where we have introduced the shorthand notation
q↖ =q−nx+ny, q↓ =q−ny, etc., and the two unit vectors nx
and ny as shown in Fig. 1. We have set all coupling strengths
on all z dimers to Z thus restricting the parameter space of
the original model in this direction.

Within the model, as in honeycomb lattice model, there
are closed-loop symmetries that we can generate �up to a
phase� with overlapping link operators. The simplest of these
are the dodecagonal and triangular loops. These are defined
pictorially in Fig. 1. For simplicity we will refer to a generic
loop symmetry as Wq and define it such that it has eigenval-
ues of �1. The fact that the Hamiltonian commutes with all

plaquette operators implies that we may choose energy
eigenvectors �n� such that Wq= �n�Wq�n�= �1. If Wq=−1
then we say that the state �n� carries either a triangular or
dodecagonal vortex at q. When we refer to a vortex sector
we mean the subspace of the system Hilbert space with a
particular configuration of vortices. The vortex-free sector,
for example, is the subspace spanned by all eigenvectors
such that Wq=1 for all q. We will have cause later to distin-
guish between triangular and dodecagonal plaquettes. Our
labeling convention will however reflect the Kagome lattice
on which the fermions �and hard-core bosons and effective
spins� are defined.

On a torus, the plaquette operators are not independent,
as they obey �Wq= I where the product is over all q. There
are also two independent homologically nontrivial loop sym-
metries. To represent these we are free to choose any two
closed-loop operators that traverse the torus as long as they
cannot be deformed into each other by plaquette multiplica-
tion. All other homologically nontrivial loop symmetries
can be constructed from the products of these two operators
and the 3N−1 independent plaquette operators. When the
torus is specified by periodic boundary vectors �x ,y� which
are integer multiples of the unit vectors, i.e.,
x=Nxnx and y=Nyny, it is natural to define
operators Lqy

�x�=�qx
�q,1,�

x �q,1,�
x �q,2,�

y �q,2,�
y and Lqx

�y�

=�qy
�q,1,�

y �q,1,�
y �q,3,�

x �q,3,�
x as the homologically nontrivial

symmetries. We will generally use the operators L0
�x� and L0

�y�

that run through the origin as the two independent symme-
tries. For an analysis of the loop symmetries in the original
honeycomb model see Ref. 12.

It was pointed out by Kitaev that a model of this type �i.e.,
with triangles at the vertices of a honeycomb lattice� must
spontaneously break time-reversal symmetry. This implies
that all states of the system are at least twofold degenerate.1

To see this let T be the time-reversal operator. Now, because
T��=−��, the time-reversal operator changes the eigenval-
ues of all triangular plaquette operators. However, the opera-
tor itself commutes with the Hamiltonian as it contains only
terms of the form �a�b. Each eigenstate must therefore have
a time-reversed counterpart with the same energy but from
the vortex sector where the eigenvalues of all triangular
plaquettes are negated.13

Hamiltonian �1� can be written in terms of hard-core
bosons and effective spins of the Z dimers using the
mapping,6,7

�↑�↑�� = �⇑ ,0�, �↓�↓�� = �⇓ ,0� ,

�↑�↓�� = �⇑ ,1�, �↓�↑�� = �⇓ ,1� . �6�

The labels on the left-hand side indicate the states of the Z
dimer in the Sz basis. The first quantum number of the kets
on the right-hand side represents the effective spin of the
square lattice and the second is the hard-core bosonic occu-
pation number. The presence of a boson indicates an antifer-
romagnetic configuration of the spins connected by a Z link.

In the Abelian phase, the dominance of the Z-coupling
terms means that spins on these links tend to align. In this
limit the bosons are energetically suppressed. A perturbative

FIG. 1. �Color online� The star lattice is a hexagonal lattice with
each vertex replaced by a triangle. There are two types of plaquettes
symmetries in the system: triangular and dodecagonal. The triangu-
lar symmetries are responsible for the spontaneous breaking of
time-reversal symmetry �Refs. 1 and 2�.
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analysis for the low-energy effective Hamiltonian in this re-
gime shows that the first nonconstant terms occur at the sixth
order and eighth order. We have from Ref. 6

Heff = − Jeff
�6��

q
�q − Jeff

�8��
q

P��qi
�qj

�qk
� �7�

with �q=��q
y, �q=���q

z , and �q=���q
z , where �q

a is the
Pauli operator acting on the effective spin at position q. The
functional P refers to combinations of a hexagon with two
attached triangles. This effective Hamiltonian, defined now
on a Kagome lattice, is unitarily equivalent to what is known
as the hexagonal toric code, see, for example, Ref. 11. The
hexagonal toric code shares many of the same properties as
the original square toric-code system of Kitaev.9 All eigen-
states of the effective Hamiltonian �7� on a plane may be
completely characterized by the set of eigenvalues
��q ,�q ,�q	 for all q. The ground states are those with all
plaquette eigenvalues equal to +1 and its time-reversed coun-
terpart with all triangular plaquettes equal to −1 and on all
hexagonal plaquette eigenvalues equal to +1.2,6 On a torus of
N unit cells with 3N effective spins we have the following
identities:

�
q

N

�q�q = I, �
q

N

�q = I �8�

and so we have there a total of 3N−2 independent plaquette
symmetries. However we gain two independent homologi-
cally nontrivial symmetries and thus eigenstates on a torus
are uniquely labeled by using the full set of independent
symmetries.

The basis 
Eq. �6�� also describes antiferromagnetic con-
figurations of the z dimers through the bosonic occupation
number and forms an orthonormal basis for the full star lat-
tice system. The Pauli operators of the original spin Hamil-
tonian can be written as �see Refs. 7�,

�q,�
x = �q

x�bq
† + bq�, �q,�

x = bq
† + bq,

�q,�
y = �q

y�bq
† + bq�, �q,�

y = i�q
z�bq

† − bq� ,

�q,�
z = �q

z , �q,�
z = �q

z�I − 2bq
†bq� , �9�

where b† and b are the creation and annihilation operators for
the hard-core bosons. In this representation we have

HZ = − Z�
q,n

�I − 2bq,n
† bq,n� , �10�

HJ = − J�
q


i�q,1
z �bq,1

† − bq,1��bq,2
† + bq,2�

+ �q,2
x �bq,2

† + bq,2��q→,1
y �bq→,1

† + bq→,1�� , �11�

HK = − K�
q


i�q,2
z �bq,2

† − bq,2��bq,3
† + bq,3�

+ �q,3
x �q↖,2

y �bq,3
† + bq,3��bq↖,2

† + bq↖,2�� , �12�

HL = − L�
q


i�q,3
z �bq,3

† − bq,3��bq,1
† + bq,1�

+ �q,1
x �q↓,3

y �bq,1
† + bq,1��bq↓,3

† + bq↓,3�� . �13�

The basic plaquette operators written in this basis are

�q = �− 1�bq,3
† bq,3+bq→,1

† bq→,1+bq↑,2
† bq↑,2

� �q,3
y �q,2

y �q→,1
y �q→,3

y �q↑,2
y �q↑,1

y �14�

for the hexagons and

�q = �q,1↗
z �q↑,2

z �q→,3
z , �15�

�q = �
n=1

3

�− 1�bq,n
† bq,n�q,n

z �16�

for the triangles. The unit cell and the plaquettes are shown
pictorially in Fig. 2. Note that with this labeling convention
the �q operator does not contain any sites from within the
unit cell at q.

III. FERMIONIZATION

To fermionize the problem we follow the Jordan-Wigner
procedure used in Ref. 5 for the honeycomb lattice model. To
each of the hard-core bosons in the unit cell we attach a
string. The strings for hard-core bosons inside the same unit
cell are identical everywhere except inside the unit cell,
where they branch out. These strings, shown pictorially in
Fig. 3, are designed so that they break/fix a Z dimer at the
desired point on the lattice. This will ensure that the presence
of a fermion implies an antiferromagnetic configuration of
the z dimer.

We define the string operators using the following con-
vention: first apply a single �0,1

y term to a black site of the Z
link which we set to be the origin. The rest of the string is
made by operating cyclically with the overlapping links of
the Hamiltonian, �i

z� j
z, � j

y�k
x, �k

z�l
z, and �l

x�m
y , in the nx direc-

tion until we reach a required length and then �m
z �n

z , �n
x�o

y,
�o

z�p
z , and �p

y�q
x in the ny direction until we reach the unit cell

at q. The ends of the string depend on the Z link in question.
In the original spin representation we can write

FIG. 2. �Color online� The effective Kagome lattice and
plaquette operators. Note that within our labeling convention the �q
operator does not actually contain any sites from the unit cell at q.
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Sq,n � Aq,n � ��qx,qy−1�,3,�
x ��qx,qy−1�,3,�

x
¯ ��qx,1�,1,�

y ��qx,0�,3,�
x

���qx,0�,3,�
x ��qx,0�,1,�

y ��qx,0�,1,�
x

¯ ��1,0�,1,�
x ��0,0�,2,�

y

���0,0�,2,�
y ��0,0�,1,�

x ��0,0�,1,�
x �17�

with

Aq,1 = ��qx,qy�,1,�
x ,

Aq,2 = ��qx,qy�,2,�
x ��qx,qy�,1,�

x ��qx,qy�,1,�
y ,

Aq,3 = ��qx,qy�,3,�
y ��qx,qy�,1,�

y ��qx,qy�,1,�
y . �18�

The hard-core-boson/effective-spin representation of the
strings for each of the three Z links is shown in Fig. 3. Note
that the end of the string always contains a term �b†+b� or
�b†−b� thus ensuring a hard-core boson is created or de-
stroyed.

The operators Sq,n square to unity while different
operators Sq,m ,Sq�,n anticommute with each other. This
leads us to identify the strings Sq,n with the following
sum of fermionic creation and annihilation operators:
Sq,n=cq,n

† +cq,n= �bq,n
† +bq,n�Sq,n� , where Sq,n� is simply the

string Sq,n but with the �bq,n
† +bq,n� bosonic dependence of the

end-point removed, see Fig. 3. Individually our fermionic
canonical creation and annihilation operators are

cq,n
† = bq,n

† Sq,n� , cq,n = bq,nSq,n� , �19�

where the strings now ensure that all operators cq,n
† and cq,n

obey the canonical fermionic anticommutator relations

�cq,m
† ,cq�,m	 = �qq��n,m,

�cq,n
† ,cq�,m

† 	 = 0, �cq,n,cq�,m	 = 0. �20�

Note that the start of each string Sq violates the plaquette
symmetries �0 and �0←. This linking of fermions and vortex
pairs seems to be a generic property of Kitaev models that
has important consequences for the spectral properties on a
torus.5

Substituting the bq,n
† =Sq,n� cq,n

† and bq,n=Sq,n� cq,n into ex-
pressions �10�–�13� gives the following fermionic expres-
sions for the Hamiltonian terms:

HZ = Z�
q,n

�2cq,n
† cq,n − I� , �21�

HJ = J�
q


�cq,1
† − cq,1��cq,2

† + cq,2�

+ �q↓�cq,2
† − cq,2��cq→,1

† + cq→,1�� , �22�

HK = K�
q

�− i�q�cq,2
† + cq,2�
�cq,3

† + cq,3�

− i�q↓�q↓�cq,2
† − cq,2��cq↘,3

† − cq↘,3��	 , �23�

HL = L�
q


�cq,1
† − cq,1��cq,3

† + cq,3� + �cq,3
† − cq,3��cq↑,1

† + cq↑,1�� ,

�24�

where � is the rectangular product of plaquette operators
�hexagons and triangles� shown in Fig. 4. On a torus the
terms that connect opposite sides will have some dependence
on the homologically nontrivial loop symmetries. Details on
how to calculate their precise values can be found in Ref. 5.

The Jordan-Wigner transform has been chosen so that the
vacuum states for the fermions are the toric-code states on
the effective Kagome lattice. This immediately implies that
that under time reversal the fermionic vacua must be ex-
changed. The form of the fermionic Hamiltonian also reveals
a number of important features. We see that the triangular
vorticity is incorporated within the HJ term and the HK term,
through the �q operator. However, the eigenvalue of the �q
does not change under time reversal as it contains an even
number of triangles. This means that if K=0 then eigenstates
��� and T��� are fermionically identical. This would seem
like a contradiction �recall these are different sectors� but we
are saved by recalling that our formulation also demands that
the vacuum sectors be defined in terms of the hexagonal toric
code on the effective Kagome lattice. We see that fermioni-
cally these eigenstates are the same, they have the same fer-
mion density and the same fermion number parity. Indeed
they are structurally identical in every way except for the
vacuum from which they were created. In the opposite sense,
in terms of the fermions at least, any sign of spontaneous
symmetry breaking only occurs in the terms in HK, which
always contain an odd number of triangular plaquettes.

FIG. 3. �Color online� The three strings Sq,1, Sq,2, and Sq,3 in the
effective-spin hard-core boson representation. Here a= �2b†b− I�.

FIG. 4. �Color online� The operator �q and the vector q. The
operator �q is the product of all hexagonal and triangular plaquettes
in the shaded region.
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These terms closely resemble the time-reversal invariant
terms in the honeycomb model.1,5 We will see later that, in
the same way, these terms are jointly responsible for the
opening of a gap.

To proceed we first rewrite the fermonic Hamiltonian as

H =
1

2�
qq�


cq
† cq �
 �qq� 	qq�

	qq�
† − �qq�

T �
cq�

cq�
† � , �25�

where the q now label both the position and internal indices.
The system is diagonalized by solving the Bogoliubov-De
Gennes �BdG� eigenvalue problem


 � 	

	† − �T� = 
U V�

V U��
E 0

0 − E
�
U V�

V U��†

, �26�

where the nonzero entries of the diagonal matrix
Enm=En�nm are the quasiparticle excitation energies. The
Bogoliubov-Valentin quasiparticle excitations are



1
†, . . . ,
M

† 
1, . . . ,
M � = 
c1
†, . . . ,cM

† c1, . . . ,cM �W ,

�27�

where

W � 
U V�

V U�� . �28�

Inverting Eq. �27� and substituting into Eq. �25� gives

H = �
n=1

M

En�
n
†
n −

1

2
� . �29�

Normally one assumes that all the values of En in this equa-
tion are positive. It is this choice that one usually uses to
obtain the ground-state energy of −�En /2. However, the
Hartree-Fock-Bogoliubov formulation above actually only
requires that the values of En in Eq. �25� come as negated
pairs. It does not specify that positive energies must be as-
sociated with 
† operators rather than 
 operators. This is an
important point as physical situations arise naturally where
the annihilation of a quasiparticle costs energy.

In the vortex-free sector �eigenvalues of all plaquettes are
+1� we can move to momentum space with the Fourier trans-
form

cq,n = M−1/2 � ck,neik·q. �30�

After some manipulation we then arrive at the following mo-
mentum space representation for the planar Hamiltonian

H =
1

2 �
k,nm


ckn
† c−kn �H�k�
 ckm

c−km
† � �31�

with

H�k� = 
 ��k� 	�k�
	�k�† − 
��− k��T� , �32�

where

� = � 2Z J�1 + �x� L�1 + �y�
J�1 + �x

�� 2Z iK�1 + �y�x
��

L�1 + �y
�� − iK�1 + �x�y

�� 2Z
� �33�

and

	 = � 0 J�1 − �x� L�1 − �y�
− J�1 − �x

�� 0 iK�1 − �x
��y�

− L�1 − �y
�� − iK�1 − �x�y

�� 0
� �34�

and we have set �x=exp�ikx� and �y =exp�iky�.
In position space the eigenvalues of the BdG equation

come in positive and negative pairs with eigenvectors of the
form �U ,V�T and �V� ,U��T, respectively. In momentum rep-
resentation however the positive and negative eigenvectors
take the form �U ,V�T and �−PV� , PU��T, respectively, where
the 3�3 diagonal matrix P has elements P11=1, P22=e−ikx,
and P33=e−iky.

From Eq. �23� we see that the effect of the time-reversal
operator T is to change the signs of the elements �2,3� and
�3,2� in the matrices above. It is then straightforward to see
that H�k�= 
TH�−k���. Fermionic eigenvectors in the vortex-
free sector are thus related to their time-reversed counterparts
by conjugation and the reversal of momenta. However we
again point out that these eigenvectors represent fermionic
creation and annihilation operators from time-reversed sec-
tors with different toric-code vacuum states.

The doubled ��E� symmetry of the spectrum means that
the eigenvalue equation can be written as a cubic polynomial
equation and analytical expressions for the eigenvalues can
be obtained, see the Appendix. However to calculate the ge-
ometry of the phase boundary it is more straightforward to
observe that within the Abelian phase the minimum gap al-
ways occurs at k=0. As this coincides with when 	nm=0 one
can calculate exactly where the phase transition lies by a
straightforward diagonalization of the � matrix above with
k=0. The eigenvalues are calculated to be

E = � 2�Z + a�J2 + K2 + L2� , �35�

where a=−1, 0, or 1 and therefore the minimum-energy gap
is given by �2Z−2�J2+K2+L2�. The phase transition thus
occurs at Z=�J2+K2+L2. This is verified in Fig. 5 where the
minimum-energy gap as a function of J=L and K was cal-
culated by numerical diagonalization.

That the minimum energy is obtained at k=0 also holds
true along the J=K=L line so long as J=K=L�

��3�
2 Z. We

see therefore that the gap closes and opens linearly as a func-
tion of J along this line. The dispersion relations for the A
phase, the critical point, and the gapped B phase along the
J=K=L line are shown in Fig. 6.

It is not generally true however that the minimum energy
occurs when k=0. This is perhaps most striking when one of
the parameters J, K, or L are zero, see the Appendix and
Figs. 5 and 7. On these planes and outside the radius of the
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sphere we are in a gapless B phase. In order to open a gap we
must move off these planes. If, for example, K=0 this gap-
less phase occurs because of two Dirac cones at �k. Letting
K
0 but with K�J=L opens a mass gap in much the same
way as the three-body terms do so in the original honeycomb
model, see Fig. 5 and Ref. 1. In Fig. 8 we also plot the
dispersion relations showing the Dirac cones and the opening
of the gap with K
0. Calculations around the L=0 or J=0
planes reveal similar properties.

IV. GROUND-STATE DEGENERACY ON A TORUS

The ground-state degeneracy on a torus first observed by
Ref. 2 may be calculated within the Hartree-Fock-
Bogoliubov formalism in the following way. We have al-
ready fixed the vacua to be the toric-code states so we know
by the Bloch-Messiah-Zumino theorem14,15 that we can write

�gs� = �
m=1

p

am
† �

l�m

�ul + vlal
†a

l̄

†���� , � , �	,� � 	� , �36�

where the a†’s are the canonical fermionic raising operators
gotten from the c† by performing a singular value decompo-
sition on the U submatrix of the full eigenvector matrix W,
see, for example, Ref. 5. The number p gives the number of
fully occupied unpaired fermions in the ground state and
dictates the fermion number parity. In the extreme case

where all fermions are unpaired the wave function
�m=1

p am
† �vac� is the completely filled Fermi sea.

On a torus our vacuum state takes the form
��� , � ,�	 , l0

�x�l0
�y� , �� 	�, where l0

�x� and l0
y are the eigenvalues

of the operators L0
�x� and L0

�y� defined above. For the vortex-
free sector on a torus we can use the Bloch Hamiltonian �31�
to calculate energies, eigenvectors, and thus the values of ul
and vl. In this case the allowed values of k� in the various
homology sectors on the torus of size �Nx ,Ny� are
��+2�

n�

N�
for integer n�=0,1 , . . . ,N�−1, where the four to-

pological sectors, �l0
�x� , l0

�y��= ��1, �1� have values of ��

given by ��= �
l0
���+1

2 � �
N�

. For a large torus one expects that
these discretized k values becomes so close as to give ap-
proximately the same ground-state energy for each homol-
ogy sector, i.e.,

Egs = − �
k

�
n=1

3

Ek,n/2. �37�

This value comes directly from the assumption that all values
Ek,n associated with the 
† operators are positive. However,
cases where some of the 
† must be associated with
negative-energy solutions do occur and in these cases the
ground-state energy is raised. This is precisely what happens
in the �−1,−1� homology sector. In the non-Abelian phase of
this system any arrangement of the W matrix such that posi-
tive eigenvalues 
Eq. �35�� at k=0 are associated with 
†

operators ensures that the matrix U �i.e., the upper left quad-

FIG. 5. �Color online� The minimum-energy gap of the vortex-
free sector with Z=1. The critical point can be observed along the
�J2+K2+L2=1 line. The system is gapless when J=L
1 /�2 and
K=0. More generally if any of the parameters J, K, or L are zero the
system is gapless beyond the phase transition.

(b)(a) (c)

FIG. 6. �Color online� Dispersion relation Ek for �a� the Abelian phase, �b� the phase transition, and �c� the non-Abelian phase.

FIG. 7. �Color online� Schematic of the system phase diagram.
The surface of the sphere of radius Z indicates the critical boundary
between Abelian and non-Abelian phases. Inside the sphere we
have a gapped Abelian phase. Outside the sphere we are in a gapped
non-Abelian phase, provided we are not on the J=0, K=0, or L
=0 planes indicated in light green. On these planes the system is
gapless.
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rant of W� has one column that has just zeros. It is therefore
rank deficient and, by the Bloch-Messiah-Zumino theorem,
the ground state has one fully occupied mode �i.e., with
u=0 and �v�=1� with momentum k=0.

Assuming we are working on an even-even lattice, the
possibility of having odd fermion number parity is excluded
by the fact that we are in the vortex-free sector. This means
we must switch columns �Ul ,Vl�↔ �−PVl

� , PUl
�� of the ei-

genvector matrix describing the annihilation and creation of
Bogoliubov fermions and perform the singular value decom-
position of the new U matrix. The switching of columns of
the matrix effectively changes an occupied mode for an
empty one thereby giving the correct fermionic parity num-
ber. However, it also raises the ground-state energy in this
sector to Egs=−�k,nEk,n /2+E0,1. If the system is gapped then
the ground state of this sector is higher than that of the other
three fully or partially antiperiodic sectors, leading to a re-
duction in the topological degeneracy.

V. CONCLUSION AND OVERVIEW

We have shown that the star lattice Kitaev model may be
mapped to a system of fermions hopping on an effective
Kagome lattice with a Z2 gauge field. The fermionic vacua
are explicitly shown to be toric-code states of the effective
Kagome spin lattice. The Abelian phase of the model is in-
herited from the fermionic vacua and time-reversal symme-
try is broken at this level. We have shown that, as in the
original honeycomb system, there are three distinct phases: a
gapped Abelian phase, a gapless B phase, and a gapped non-
Abelian B phase. The boundary between the phases can be
understood as a sphere of radius Z in the parameter space of
the coupling strengths J, K, and L around the triangles. The
gapped Abelian phase lies inside the sphere. The gapless B
phase lies along the trivial planes J=0, K=0, or L=0 outside
the sphere. These instances correspond to the cases where the
underlying lattice is bipartite. Off these planes and outside
the sphere the system is in a gapped non-Abelian phase with
spectral properties similar to those of the gapped non-
Abelian phase of the original honeycomb lattice model. As in
the original system the ground-state degeneracy on a torus
can be determined by using the Bloch-Messiah theorem.
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APPENDIX

In this appendix we will derive the explicit dispersion
relations for the ground-state sectors as well as the exact
locations of the Dirac cones that occur in the gapless B
phase. The characteristic equation of the 6�6 matrix in Eq.
�32� is

�6 + a�4 + b�2 + c = 0, �A1�

where

a = − 8R�0� − 12Z2,

b = 16�
R�0� + Z2�2 − 2Z2
R�k� − Z2�	 ,

c = − 64Z2�J4 + K4 + L4 + Z4 + 2
T�k� − Z2R�k��	 �A2�

with R�k�=J2 cos�kx�+K2 cos�kx−ky�+L2 cos�ky� and
T�k�=K2L2 cos�kx�+J2L2 cos�kx−ky�+J2K2 cos�ky�.

Equation �A1� can be reduced to a degree three polyno-
mial by simply substituting �2=x. A third degree univariate
polynomial equation can be solved exactly and the solutions
can be given as follows.16,17 Let q and r be defined as

q =
3b − a2

9
,

r =
9ab − 27c − 2a3

54
, �A3�

and the discriminant of this polynomial be p=q3+r2. Also,
taking s and t as

s = �3 r + �p and t = �3 r − �p , �A4�

we get three roots x1 ,x2 ,x3 as

x1 = s + t −
a

3
,

x2 = −
1

2
�s + t� −

a

3
+

�3

2
�s − t�i ,

x3 = −
1

2
�s + t� −

a

3
−

�3

2
�s − t�i . �A5�

Now, for p
0, two of these are complex-conjugate roots.
However, as all the eigenvalues are known to be real we may
disregard this case. For p�0, we let �=arccos� r

�−q3 � and the
three real roots can be given as

(b)(a)

FIG. 8. �Color online� Dispersion relation Ek for �a� the gapless
B phase with K=0 and �b� the gapped B phase with K=0.2.
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x1 = 2�− q cos��

3
� −

a

3
,

x2 = 2�− q cos�� + 2�

3
� −

a

3
,

x3 = 2�− q cos�� + 4�

3
� −

a

3
. �A6�

The real roots of a generic cubic univariate polynomial equa-
tion have recently been classified in terms of its coefficients
using real algebraic geometry techniques.18,19 For p=0,
r= ��−q3 and so x2=x3. For all the cases we have observed
the dispersion relation �the minimum-energy band� is given
by Ek=�2=�x2.

Gapless phases in the system may be identified by setting
c=0 or equivalently setting det�H�=0. From this we obtain a
quadratic equation in the variable z=Z2,

z2 + 2R�k�z + 2T�k� + J4 + K4 + L4 = 0 �A7�

with generic solutions

Z = �R�k� � �R�k�2 − 
2T�k� + J4 + K4 + L4� . �A8�

If k=0 we have R�0�2= 
2T�0�+J4+K4+L4� and the quantum
phase transition can be seen to occur on the surface of the
three-sphere Z=�R�0� in the space of the coupling param-
eters J, K, and L, see Fig. 7.

Other interesting cases occur when either of the param-
eters J, K, or L vanish. In these situations we have

R�k�2 − 
2T�k� + J4 + K4 + L4�

=i
K2 sin�kx − ky� − L2 sin�ky��, J = 0

=i
J2 sin�kx� + L2 sin�ky��, K = 0

=i
J2 sin�kx� + K2 sin�kx − ky��, L = 0, �A9�

which, because the parameter Z is real, must vanish. This can
be used to set conditions on parameters kx and ky. In the
cases above if the two nonzero terms are set to be equal �for
example, L=K=M , J=0�, the three equations above reduce
to �i� kx=2ky, �ii� kx=−ky, and �iii� 2kx=ky, respectively. Sub-
stitution into the remaining part Z=�R�k� gives the zero en-
ergy solutions at

�kx,ky� = � �2l,l� J = 0,L = K = M

��l,− l� K = 0,J = L = M

��l,2l� L = 0,J = K = M ,

where l=cos−1�Z2 /2M2�. If M �1 /�2 we see that l is com-
plex but as we have already shown these values of J, K, and
L corresponds to the gapped phase inside the sphere Z
=�R�0�. The zero energy solutions described here form the
sharp points of the Dirac cones at these values of kx and ky.
A gap may be opened in the spectrum at these conical points
by letting each of the parameters J, K, and L have nonvan-
ishing values such that the condition �R�0�
Z is fulfilled.
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